Krĕin’s Trace Formula and the Spectral Shift Function

نویسنده

  • KHRISTO N. BOYADZHIEV
چکیده

Let A,B be two selfadjoint operators whose difference B −A is trace class. Krĕın proved the existence of a certain function ξ ∈ L1(R) such that tr[f (B)−f(A)] = ∫ Rf (x)ξ(x)dx for a large set of functions f . We give here a new proof of this result and discuss the class of admissible functions. Our proof is based on the integral representation of harmonic functions on the upper half plane and also uses the Baker-Campbell-Hausdorff formula. 2000 Mathematics Subject Classification. Primary 47A55; Secondary 81Q05, 81U20.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spectral shift function and the invariance principle

The new representation formula for the spectral shift function due to F. Gesztesy and K. A. Makarov is considered. This formula is extended to the case of relatively trace class perturbations.

متن کامل

The Spectral Shift Operator

We introduce the concept of a spectral shift operator and use it to derive Krein's spectral shift function for pairs of self-adjoint operators. Our principal tools are operator-valued Herglotz functions and their logarithms. Applications to Krein's trace formula and to the Birman-Solomyak spectral averaging formula are discussed.

متن کامل

Krein’s Trace Formula for Unitary Operators and Operator Lipschitz Functions

The spectral shift function for pairs of selfadjoint operators was introduced in the paper by I.M. Lifshits [17]. In the same paper a trace formula for the difference of functions of the perturbed operator and the unperturbed operator was established. Ideas by Lifshits were developed in the paper by M.G. Krein [14], in which the spectral shift function ξ in L1(R) was defined for arbitrary pairs...

متن کامل

Some Applications of the Spectral Shift Operator

The recently introduced concept of a spectral shift operator is applied in several instances. Explicit applications include Krein's trace formula for pairs of self-adjoint operators, the Birman-Solomyak spectral averaging formula and its operator-valued extension, and an abstract approach to trace formulas based on perturbation theory and the theory of self-adjoint extensions of symmetric opera...

متن کامل

Scattering matrix, phase shift, spectral shift and trace formula for one-dimensional dissipative Schrödinger-type operators

The paper is devoted to Schrödinger operators on bounded intervals of the real axis with dissipative boundary conditions. In the framework of the Lax-Phillips scattering theory the asymptotic behaviour of the phase shift is investigated in detail and its relation to the spectral shift is discussed. In particular, the trace formula and the Birman-Krein formula are verified directly. The results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000